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SUMMARY 

A cell-vertex finite volume formulation, using local finite element approximations to calculate fluxes through 
an auxiliary mesh (control volumes) is used to solve inviscid and viscous compressible flow equations on 
unstructured grids. Non-linear artificial viscosity methods are adopted to avoid decoupling and capture 
shock waves. Artificial time-dependent terms are augmented if needed, to  guarantee convergence of common 
iterative procedures to a steady-state solution. The incompressible limit of compressible flow equations is 
studied. A unified approach for solving both compressible and incompressible flow problems is proposed. 
Also some results of a zonal formulation with different governing equations in different regions are 
presented. Applications to the solution of Maxwell’s equations for wave propagation and scattering are 
discussed in an appendix. 

KEY WORDS: inviscid and viscous flows; unstructured grids 

1. INTRODUCTION 

In this paper, simple methods to calculate compressible flows are presented. The basic idea is to 
modify the governing differential equations with artificial viscosity and artificial time-dependent 
terms and then apply standard discretization procedures suitable for unstructured grids to obtain 
a system of non-linear algebraic equations which can be solved iteratively in an efficient manner. 

Both finite volumes and finite elements methods can be used to obtain discrete analogues of the 
governing equations. Conservative discretization can be achieved with either cell-centered or 
cell-vertex finite volumes. The latter, however, is similar in many aspects to finite element 
methods.’,’ 

In the present work, the augmented equations are written in conservation form and are 
integrated over control volumes (constructed around each node and cover all the domain as 
shown in Figure 1) via Gauss and Stokes theorems. The line (and surface) integrals are numer- 
ically evaluated based on local finite element approximations using the nodal values of the 
unknowns. If linear shape functions are used, the scheme is closely related to the Galerekin finite 
element method. Applications to full potential, Euler, Navier-Stokes, as well as Maxwell’s 
equations are considered. Accurate treatments of boundary conditions are examined. 

In the following, the formulation of the problem and the corresponding numerical methods are 
discussed. Finally, some preliminary results are presented together with some concluding re- 
marks. 
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Covolume using Circumcenter Covolurne using Centroid 

Figure 1. Constructions of control volumes in two dimensions 

2. SOLUTIONS OF POTENTIAL EQUATION 

The inviscid limit of Navier-Stokes equations, as Reynolds number approaches infinity, is the 
Euler equations reflecting conservation of mass, momentum and energy and allowing in general 
for variation of entropy and vorticity in the flow field. For external aerodynamic problems of 
a smooth body at near design conditions in a uniform flow, the vorticity almost vanishes outside 
a thin viscous layer around the body and in the wake. Hence, such an irrotational flow can be 
described by a potential. Furthermore, the flow can be assumed isentropic leading to an explicit 
relation between the density and the pressure. Under these conditions, the Euler equations can be 
replaced by a simpler model of one equation in one variable. The momentum equations are not 
satisfied in general, with the assumptions of zero vorticity and constant entropy. Indeed, the 
model is not physically valid when these assumptions are grossly violated. Nevertheless, it is 
useful even for transonic flows with shock waves. 

The full potential equation is simply the conservation of mass with the velocity represented as 
the gradient of a potential. The isentropic relation combined with the energy equation (or 
Bernoulli's law) provides an expression for the density in terms of the speed. More precisely, the 
governing equation for the potential 4 is 

v.pv4 = 0 (1) 
where 
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In the above expression, M, is the free stream Mach number and y = 1.4 for air. Also, the density 
and the velocity are normalized by their free stream values. 

At a solid surface, the normal velocity component 4,, must vanish (the tangency condition). For 
a lifting aerofoil, the Kutta-Joukowski condition must be imposed which guarantees that the flow 
leaves the aerofoil in a direction bisecting the trailing edge angle. In the far field, an irrotational 
vortex must be added to the uniform flow. The strength of the vortex, r, is the jump of the 
potential at the trailing edge and it is constant along a cut extending to the outer boundary of the 
domain of the calculations. 

The non-linear potential equation admits a discontinuous solution with (isentropic) jump 
conditions. To exclude expansion shocks, weak solutions must satisfy a generalized entropy 
inequality. 

It turns out that even with the Kutta-Joukowski condition and entropy inequality satisfied, the 
solution is not necessarily unique. Multiple solutions can be numerically calculated for some 
lifting aerofoils with shocks, where the lift coefficient is no longer a single-valued function of the 
angle of attack. After this non-uniqueness problem was discovered, basic research on potential 
flows has almost stopped except at Boeing Company where potential flow codes are still in use till 
today.3 

So, the question is: How can the potential flow model be used for practical problems in 
industry, if it suffers from such a major deficiency? To answer this question, one must consider the 
potential flow model as an approximation of high Reynolds number flow outside the shear layers. 
For example, potential flow solvers must be coupled with boundary layer calculations to satisfy 
the no slip boundary condition at a solid surface. So, even the potential flow model, by itself, 
breaks down, the viscous/inviscid interaction procedure including the wake and its curvature 
effects may provide a reasonable answer. 

In general, the non-uniqueness of the solution of the steady equations may be an indication 
that the physical solution is time dependent and one must examine the asymptotic solution of the 
unsteady equations. 

Finally, the probability of having non-unique solutions for three-dimensional flows around 
practical wings is almost zero, as proved by the production codes at Boeing for the last two 
decades. 

The formulation of the three-dimensional problem is more complicated since the wake should 
not be fixed, otherwise it will carry a load. Usually, for convenience, the wake is assumed to be 
planar. At each cross-section, the circulation is calculated and kept a constant along the wake 
from the trailing edge to the outer boundary, as in the small disturbance theory. (A more exact 
treatment of the wake as a contact discontinuity which can be fitted to guarantee the pressure is 
continuous, has been attempted by some researchers to study the roll-up process with a model for 
the core of the vortex.) 

Numerical methods and results 

The main features of the present work, see References 4,5 for more details, can be summarized 

1. A frontal surface and tetrahedral grid generation algorithm6 is used to generate fully 
unstructured grids. The grid is also easily adapted based on the gradient of the solution. 

2. A combination of second and first-order upwind flux is limited similar to 
Jameson’s ‘USLIP‘ constr~ct ion.~ 

as 
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3. A conjugate gradient squared algorithm (CGSTAB)" is chosen for the solution of the linear 
system of equations at each Newton's iteration, with a symmetric successive over relaxation 
(SSOR) procedure as a preconditioner. 

The following remarks can be made: 

a. Since linear elements are used, with the potential stored at the nodes, the Cartesian velocity 
components, and hence the density, are constant in each element. For pure subsonic flows, 
where the equation is elliptic, no artificial viscosity is needed and the same compact scheme 
results from finite volumes, or Galerekin finite elements methods. With a proper lineariz- 
ation of the density, the convergence of the Newton's iteration is quadratic. Even with 
lagging the density, the convergence rate is acceptable. 

b. For transonic flows, the density is biased or retarded only in the supersonic region, 
introducing artificial dissipation, necessary for the numerical stability of the calculations. 
The values of the flux in the nearby upwind elements are used. Thus, linearization of the 
biased or retarded density leads to a non-symmetric Jacobian. We notice that the governing 
equation is of mixed type and to help the convergence time-dependent terms (&) and (4s,) 
similar to those terms of the unsteady transonic flow equation are introduced. Upwind 
discretization of the streamwise derivative d / a s  desymmetrizes the Jacobian matrix and is 
switched off in the subsonic flow region. 

c. For two-dimensional flows, the first-order version of the present scheme is similar to that of 
Pelz and Jameson2 including the artificial viscosity produced via the streamwise upwinding. 

Numerical results (obtained by D. Kinney) for M6 wing at M ,  = 0.839 and c( = 3.06" are 
plotted in Figure 2. Figure 2(a) shows coarse and refined grids. The grids vary from 100000 to 
350000 nodes. The density contours are shown in Figure 2(b) and the surface pressure distribu- 
tion at 90 per cent of the semi-span are plotted in Figure 2(c). (The experimental data are included 
only as a reference, no boundary layer or wall interference effects are accounted for). 

The incompressible limit of the compressible potentialjow equations. One can consider a flow of 
air, at low Mach numbers as incompressible. The Mach number is defined as 

M = q/a (3) 
where 

hence as 6p vanishes, the speed of sound (a) approaches infinity and the Mach number vanishes. 
Roughly speaking, the ratio of the relative change of the density to the relative change of the 
velocity is of the order of the Mach number squared 6p/p/6q/q = O ( M 2 ) .  

It is clear as the free stream Mach number goes to zero, the full potential equation reduces to 
a Laplacian since the density approaches a constant. On the other hand, the Bernoulli's law of 
compressible flow reads: 

Hence, to obtain the incompressible limit the factor y / ( y  - 1) must approach 1 or y approaches 
infinity. 
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ONERA M6 Wing - Initial Grid 

.1.4 I 

ONERA M6 Wing - Refinement Level 1 

-1 .4 1 
- 1 . o I k .  -1.2 

4.8 

0.0 

0.2 

0.4 

0.0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.S 1.0 
WC 

Grid 0 

ONERA M6 Wing - Refinement Level 2 

- P n m l R & . L o m S  
Pmmnl R&. Uppusu( 

8 -  0.8 

1 .o 
0.0 0.1 0 2  0.3 0.4 05 0.8 0.7 0.8 0.9 1.0 

WC 

c) Grid 2 

4 

4 

0.0 ": 0 2  

Pmnt R-. L O m  SUB - R . M R - . w S w f  
0.8 

1 .o 
0.0 0.1 0 2  0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0 

wc 

Grid 1 

ONERA M6 Wing - Refinement Level 3 

- I . ,  . . . . . . ... 
-12 

-1.0 

-0.8 

4.8 

4.4 

42 

0.0 

0 2  

--Raub.llppr 

1 .o 
0.0 0.1 0 2  0.3 0.4 0 5  0.6 0.7 0.8 0.9 1.0 

wc 

Grid 3 

Figure 2. (a) Grids, (b) density contours and (c). C, at 90 per cent semi-span, for M6 wing, Mach 0.839, 3.06" 

We can avoid this difficulty if we deal instead with the pressure coefficient, C ,  defined as 

where p is a normalized pressure. The isentropic relation in terms of p and p is given by 

P = pY/yM:  (7) 
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Hence, 
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(8) 

substituting for p ,  one obtains 

Using a binomial expansion for small Mach numbers, the above expression reduces to 

cpcomp = (1 - q 2 )  + ML8 (10) 
where ( M i d )  represents the rest of the terms in the expansion. Therefore, 

The above analysis holds for unsteady flows (with uniform upstream conditions) as well, if q 2  is 
replaced by 

q2 + 24, 
The conclusion is: potential codes for compressible flows can be used for the simulation of 
incompressible flows (with zero Mach number) with a modified form of the pressure coefficient, 
based on a binomial expansion. The situation is more complicated for Euler and Navier-Stokes 
equations as will be discussed later. 

3. SOLUTIONS OF EULER EQUATIONS 

Recently, there have been intensive efforts dedicated to develop efficient solvers, based on the 
conservation laws, to simulate flows over complex geometrics. For strong shocks, the entropy 
jump cannot be neglected. Furthermore, if the shock is curved the entropy jump varies along the 
shock generating a vorticity field and the potential flow model cannot be used by itself. There are 
also many applications where the flow field is inherently rotational as for example if a strong gust 
exists, or, for the case of a tail in the wake of a wing. Euler codes are also needed to capture 
contact discontinuities, a more difficult task than capturing shock waves. Moreover, Euler 
calculations can shed some light on the properties of shear flows in the limit of high Reynolds 
numbers. At any rate, an efficient and accurate Euler Code is a necessary step toward developing 
practical Navier-Stokes codes. 

The conservation of mass, momentum and energy for unsteady flows is a natural formulation 
based on a hyperbolic system of equations to obtain asymptotically, for large time, a steady-state 
solution (if it exists). It is conceivable, however, that one can construct a more efficient iterative 
algorithm (as in the pseudo-time dependent approach") to solve the steady equations. In some 
cases, for example, if an implicit procedure is used, the obtained solution may not be stable, or in 
other words, it is physically unrealizable. Moreover, since the steady equations are non-linear, 
they may admit multiple solutions. Recently, Jameson" has calculated non-unique solutions of 
Euler equations for certain aerofoils. Hence, the conclusion of a previous study by Salas et aZ.,13 
that the non-uniqueness problem of the full potential equation is due to the assumptions that the 
flow is irrotational and isentropic and the exact inviscid (Euler) model does not have this 
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anomaly, is no longer valid. The non-uniqueness problem of the steady equations may be an 
indication that the steady-state limit of the time-dependent equations does not exist. 

Other types of non-uniqueness may result if the formulation is not well-posed. Recently, 
P ~ l l i a m ' ~  calculated a lifting solution over a cylinder and an ellipse in low subsonic flows at 
a small angle of attack using several Euler codes. For this problem, analytical solutions of the 
potential equation are available. They are also exact solutions of Euler equations. On the discrete 
level, however, Euler calculations are contaminated with the artificial dissipation necessarily for 
numerical stability. Hence, depending on the level of artificial vorticity generated due to the 
artificial dissipation and the numerical treatment of boundary conditions, circulation and lift can 
be developed in the discrete solution. In Reference 15, Hafez and Brucker constructed a scheme 
for incompressible Euler equations which conserved vorticity. It was shown therefore that 
a discrete potential existed and numerical results for the cylinder, and the ellipse problems with 
zero lift and drag (up to machine accuracy) were presented. 

It was also realized that other solutions with lift (and zero drag) existed. In Reference 16, 
Winterstein and Hafez argued that the formulation is not well-posed. Obviously, an irrotational 
vortex (of any finite strength) can be added to the solution satisfying the tangency condition at the 
solid surface with a uniform flow at infinity, since the velocity component due to the vortex dies 
like 1 / r ,  where r is the distance from the centre of the cylinder. By specifying the rear stagnation 
point on the surface of the body, one can obtain a solution with a certain lift. In particular, a zero 
lift solution, can be easily calculated, as demonstrated in References 16 and 17. Simply, as in 
potential flows, a Kutta-Joukowski condition is needed for Euler calculations over smooth 
bodies. For aerofoils with sharp trailing edges, the artificial viscosity (necessary for numerical 
stability) forces the flow to leave the trailing edge smoothly. There is no guarantee, however, that 
the flow leaves tangent to the side of lower entropy, as the inviscid model requires. Therefore, the 
treatment of the sharp trailing edge in existing Euler codes may not be completely satisfactory. In 
the following, some Euler calculations over aerofoils and smooth bodies, based on finite ele- 
ment/finite volume discretization using unstructured grids will be examined. 

Numerical methods and results 

The Euler equations, in two dimensions, written in conservation form, and using standard 
notations. read 

F ,  -I G, = 0 (12) 
where E. and G are the fluxes in the x and y directions. Using Gauss theorem, the above equations 
are integrated over the control volumes, constructed around the nodes, to yield a system of 
equations reflecting the balance of fluxes. In each element, the line integral of the fluxes is 
numerically evaluated using a local approximation based on the representation of the variables in 
terms of their nodal values. For example, in triangles, the variables vary linearly and a trapezoidal 
rule can be employed to calculate each segment of the line integral and all the relevant 
contributions are assembled, for each node, to obtain the system of discrete equations. To avoid 
decoupling and to capture solution discontinuities, artificial viscosity terms are added to Euler 
equations and are properly discretized. The simplest form of artificial viscosity is the Laplacian, 
with a coefficient proportional to the grid size. The result, however, is at best first-order accurate. 
A higher-order viscosity (fourth-order derivatives) can be used for smooth flows, but it does not 
guarantee non-oscillatory solutions for flows with shocks. A blending of Laplacian and bihar- 
monic operators is used by Jameson et al. very successf~lly.'~ To avoid the wiggles in the shock 
region, the fourth-order derivative terms are switched off while the second-order derivative terms 



COMPRESSIBLE AND INCOMPRESSIBLE FLOWS 72 1 

are only active in this large gradient region. The scheme has been reformulated in terms of flux 
limiters and its applications on unstructured grids has been demonstrated for two- and three- 
dimensional flows.* 

One problem of this scheme is the numerical boundary conditions required for the solution of 
the higher-order system. In the early applications, extrapolations from interior nodes were used 
to obtain values at ghost points. This process led to inaccurate results as discussed in Reference 
13. A careful treatment of boundary conditions is necessary to avoid generation of artificial 
vorticity as discussed in References 15 and 16. 

Other alternatives are Lax-Wendroff and least-squares schemes. MacCormack’s version of 
Lax-Wendroff scheme” has been used extensively for more than two decades. A new implicit 
version, due to Lerat,” gives excellent results on regular grids. A finite element analogue of 
a Lax-Wendroff scheme was proposed by Donea.” Least-squares methods have been studied by 
HughesZ2 and Jiangand P ~ v i n e l l i . ~ ~  The Taylor-Galerkin and the least-squares Galerkin 
methods are compared in Reference 24 for transonic flow calculations. It is shown that the two 
methods can be identical if the equations are written as a symmetric system of hyperbolic 
equations (i.e., if the entropy variables are used). 

In the present study, a simplified partial least-squares method is employed. Following 
Winterstein and Hafez,16 the continuity equation is augmented by the Lapalacian of the pressure 
balanced by some extra terms. The total expression is obtained via minimizing the integral of the 
sum of the squares of the momentum equations (assuming mass is conserved) with respect to the 
pressure. For smooth flows, this expression vanishes on the differential level, but its discrete 
analogue is not necessarily zero. Also, the momentum equations are augmented by extra terms 
providing upon discretization higher order, streamwise, artificial diffusion. For example, the 
minimization of the integral of the square of the x-momentum equation with respect to u, the 
velocity component in the x direction, assuming mass is conserved and the pressure and the 
density are known, yields an expression containing second derivatives of u, balanced by pressure 
terms. Again, this total expression vanishes for smooth flows on the differential level. The 
y-momentum equation is treated similarly. The total enthalpy is assumed constant, otherwise the 
energy equation with its corresponding augmented terms is used. 

The present formulation is simpler than those of the Lax-Wendroff or full least-squares 
methods since the momentum balance in each direction is dealt with separately as a scalar 
equation. Using the present finite element/finite volume discretization procedure, no cross-wind 
diffusion, in the momentum equations, is produced. Moreover, since only second order deriva- 
tives appear in these extra augmented terms, the discrete scheme is still compact relating the 
unknowns at a node to the unknowns at the nearest surrounding nodes. Also, since the 
extra-augmented terms are related to the original equations, the extra numerical boundary 
conditions are obtained simply by enforcing the original first-order equations at the boundaries. 
More precisely, the area integrals of the artificial viscosity terms in the continuity equation are 
reduced via Gauss’s theorem to line integrals of first-order equations along the sides of the control 
volume. These line integrals are ignored at solid surfaces. The extra terms added to the 
momentum equations are derivatives along the flow direction, and since the body is a streamline, 
no extra boundary conditions are needed for the evaluation of these terms. Therefore, only 
physical boundary conditions are required in the present method. 

For blunt bodies, however, another approach is recommended. The pressure at a boundary 
node is obtained using the normal momentum equation written in terms of R,  the radius of 
curvature of the solid surface. Similarly, the vorticity (0) can be written in terms of R and if the 
vorticity is zero at the solid surface, as in subsonic flows with uniform upstream conditions, the 
speed at a boundary node can be easily determined. 
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In general, o does not vanish at the solid surface. It can be calculated, however, based on 
Crocco's relation. (For constant total enthalpy case, w is related to the normal derivative of the 
entropy.) Once the surface pressure and speed are known, the density is evaluated from the total 
enthalpy. Imposing the vorticity at the solid surface, leads to a more accurate solution. No 
artificial viscosity is needed at the boundary, and hence the solution is not contaminated with 
artificial vorticity generated because of the numerical boundary conditions required for the 
higher-order derivatives. Numerical experiments confirm this conclusion as will be shown later. 

The discrete equations for all internal and boundary nodes are then linearized using Newton's 
method. The diagonal terms of the Jacobian are augmented with A/At, where A is the area of the 
control volume and At is an artificial time step to help the convergence of the iterative procedure 
which is employed to calculate the correction. Once the solution is updated, the residual and the 
Jacobian are evaluated and the process is repeated until convergence. For semi-unstructured 
grids where rings of nodes can be identified although the number of nodes varies from one ring to 
another, a zebra or a block relaxation algorithm is used where a periodic black tridiagonal solver 
is required. The convergence of the iterative process can be accelerated using for example 
GMRES techniques. 

The results for compressible flows over an ellipse ( 6 :  1) are presented. The rear stagnation point 
is fixed as discussed in Reference 16. The case of M ,  = 0 2  and a = 5", calculated by Pulliam,14 is 
studied. A grid of 128 nodes on the surface and 50 rings is used with a uniform flow as an initial 
guess. The pressure contours, the surface pressure distribution and the convergence history are 
plotted in Figures 3(a), 3(b) and 3(c), respectively. The lift and drag coefficients are of order 
and the maximum change in entropy is - 2 x The results of the calculations of subsonic 
flows M ,  = 0.2 over a lifting NACA 0012 aerofoil at 10 and 20" are shown in Figures 3(d) and 
3(e). The body is discretized with 152 nodes and the outer boundary is placed 20 chords away. At 
the trailing edge, the blunt body conditions are substituted with the no flux-boundary conditions. 
No flow separation is detected. The lift coefficients are 1.2 and 2.39, respectively, and the drag 
coefficient is of the order of the truncation error. 

Figure 3. (a) 



COMPRESSIBLE AND INCOMPRESSIBLE FLOWS 

1.5 - 
CP I 

1.0- - 

0.5 - 
- 

0.0 - 
- 

-0.5 - - - 
- 

723 

0.107 

i r , ,  I , ,  

-1 .o -0.5 0.0 0.5 1 .o 1.5 

-1.0 I I 1 I I I T 

-0.6 -0.4 43.2 0.0 0.2 0.4 0.6 

x 
Figure 3. (b) 

To obtain non-oscillatory solutions, for transonic flows, more artificial viscosity, in terms of 
a Laplacian of the pressure, is added to the continuity equation, without the associated balancing 
terms, in the shock region. Several combinations of balanced and unbalanced Laplacian are 
addressed in a joint effort of Habashi using a standard Galerkin method with bilinear elements in 
Reference 25. 

In Figure 3(f), the surface pressure distribution for the case of M, = 0.8 and zero angle of 
attack is plotted. The convergence history is shown in Figure 3(g). The results for two lifting cases 
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Figure 3. (a) Pressure contours, (b) surface pressure distribution, (c) history of the residuals, (d) surface pressure 
distribution for NACA 0012 aerofoil, Mach 0.2, lo", (e) surface pressure distribution for NACA 0012 aerofoil, Mach 0.2, 
2o", (f) surface pressure distribution for NACA 0012 aerofoil, Mach 0.8, o", (g) history of the residuals for NACA 0012 
aerofoil, Mach 0.8, o", (h) surface pressure distribution for NACA 0012 aerofoil, Mach 0.85, 1.25", (i) history of the 
residuals for NACA 0012 aerofoil, Mach 0.85, 1.25", (j) surface pressure distribution for NACA 0012 aerofoil, Mach 0.95, 
1.25". (k) history of the residuals for NACA 0012 aerofoil, Mach 0.95, 1.25", (I) surface pressure distribution for NACA 

0012 aerofoil, Mach 2.0, 0" and (m) pressure contours for NACA 0012 aerofoil, Mach 2.0, 0" 

of M ,  = 0.85 and M ,  = 0.95 with a = 1.25" are plotted in Figures 3(h)-3(k). Finally, a super- 
sonic case of M ,  = 2.0 at zero angle of attack is calculated and the pressure contours and surface 
distributions are shown in Figures 3(1) and 3(m). Notice the shock is smeared in the field; this is 
a common problem in most existing codes. Possible remedies include adaptive gridding and/or 
shock fitting. 

4. SOLUTIONS OF NAVIER-STOKES EQUATIONS 

This study is restricted to laminar flows where no turbulence modelling is required. Still, to 
resolve boundary layers, a stretched grid with a fine spacing in the neighbourhood of a solid 
surface is needed for practical calculations. (Uniformly fine mesh cannot be afforded). Unstruc- 
tured grid generation, however, may lead to very distorted elements. Regular grids in the 
neighbourhood of the body may be preferred to allow for the thin layer approximation of 
Navier-Stokes equations, and for the implicit treatment of the unknowns in the direction normal 
to the wall. The flexibility of unstructured grid and the feasibility of its adaptation can be 
recovered outside the viscous layers. Hence, a hybrid grid maybe an optimal choice. An 
alternative will be oversetting grids, however, the interpolation may destroy the conservation of 
the numerical fluxes. Furthermore, an important issue in the calculations of high Reynolds 
number flows, is the use of artificial viscosity and the minimization of its effect relative to the real 
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viscosity. In this regard, schemes producing less artificial cross wind diffusion, are preferred. 
Unlike the artificial viscosity, accurate discretization of the real viscous terms is necessary. The 
accuracy deteriorates for stretched grids with very skewed elements calling in general for 
higher-order schemes. The present scheme is still however, applicable using linear elements. 

Because of the no-slip boundary condition, the vorticity is concentrated in boundary layers and 
it is convected and diffused in the field. The pressure, unlike the velocity and vorticity does not 
have a large gradient in the direction normal to the wall and for high Reynolds numbers pn is 
vanishingly small at  the solid surface. For compressible flows, the energy equation should be 
solved (coupled with continuity and momentum equations) to obtain the temperature distribu- 
tions and thermal boundary layers. Two non-dimensional parameters appear in the governing 
equations, Reynolds (Re) and Peclet (Pe) numbers. [The latter is the product of Prandtl (Pe) and 
Reynolds (Re) numbers.] The Mach number appears in the far-field boundary condition if the 
standard nondimensional formulation is adopted. 

The governing equations for steady flows can be written in the following form: 
_ 
v-pq = o  (13) 

1 -  
Vpqq = - vp +- -v.t  

Re 

where t is the viscous stress tensor and Fis the coefficient of heat conductivity, normalized by its 
free stream value. The density and the velocity are normalized by their magnitude at free stream 
conditions. The pressure is normalized by p m q L ,  the temperature by q:/cp and all distances by 
a characteristic length 1. The perfect gas law, p = pRT,  in non-dimensional form becomes 

p=&) Y - 1  

where 

At a solid surface the velocity vanishes and either the temperature or its normal derivative is 
specified. In the far field, all disturbances vanish for subsonic flows, except in the wake. The 
ambient pressure is recovered far downstream of the body. For supersonic flows, disturbances 
propagate along preferred directions (characteristics) and the flow upstream of the body is 
undisturbed. 

For convenience, some simplifications are made. The bulk or second viscosity coefficient is 
assumed to be zero. Both viscosity and heat conductivity coefficients are assumed constant and so 
are the specified heats c p  and c,, and their ratio y. It is well known that, compressible boundary 
layers equations admit a solution with constant total enthalpy (if Pr = 1). Outside the viscous 
layers, the total enthalpy is constant for inviscid adiabatic flows, with uniform upstream 
conditions. Hence, the energy equation can be replaced by the condition that the total enthalpy is 
constant everywhere. This is not an exact solution of the compressible Navier-Stokes equations 
but it is a reasonable approximation. 
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Numerical methods and results 

As in Euler calculations, the continuity equation is augmented by the Laplacian of the pressure 
balanced by extra terms. The contributions of the viscous stresses in the momentum equations to 
these extra terms are neglected. Such an approximation is acceptable for high Reynolds number 
flows. 

The momentum equations are also changed with augmented terms, similar to those used in 
Euler calculations. These terms, however, do not vanish on the differential level for viscous flows. 
Upon proper discretization, they produce higher-order streamwise artificial dissipation which is 
relatively small compared to the real dissipation. Furthermore, they are scaled with the speed, 
hence they are not contaminating the solution in the neighbourhood of a solid surface. 

The above formulation is implier than the Taylor/Galerkin or full least squares. Application of 
the latter to Navier-Stokes equations leads to an equivalent system of biharmonic equations. 
Although, the appearance of fourth-order derivatives may be avoided by introducing extra 
unknowns, the corresponding calculations are still more expensive. 

Here, Gauss theorems are used to integrate the augmented equations over the control volume 
and reduce the discretization process to approximation of line integrals. A proper treatment of 
boundary conditions is essential particularly at the solid surface. Both velocity components are 
set to zero at the boundary nodes. The pressure is obtained from the discretization of the normal 
momentum equation over the special control volumes near the boundary. (This treatment is more 
consistent than extrapolating the pressure or imposing pn = 0 at the boundary nodes.) For more 
details see References 26 and 27. The density is obtained based on the condition of constant total 
enthalpy. 

Viscous compressible flows over a lifting aerofoil (NACA 0012) at lo" is computed for 
M ,  = 0.8 and Re = 500 as well as for M ,  = 2.0 and Re = 106. Both calculations are performed 
on a 199 x 35 grid, and the results are plotted in Figure 4. In Figure 4(a) the surface pressure 
distribution of the first case is compared with Hollanders' solution.28 The pressure contours are 
plotted in Figure 4(b). The pressure contours for the supersonic case is plotted in Figure 4(c). The 
results are in agreement with those of Reference 29. The same two cases are recalculated based on 
the zonal approach as will be discussed later. 
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(4 
Figure 4. (a) Surface pressure distribution for NACA 0012 aerofoil, Mach 0.8, lo", Re = 500, (b) pressure contours for 
NACA 0012 aerofoil, Mach 0.8, lo", Re = 500 and (c) pressure contours for NACA 0012 aerofoil, Mach 2.0, lo", Re = 106 
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The incompressible limit of the compressible Navier-Stokes equations. The performance of most 
of compressible codes in terms of a accuracy and convergence degenerates as the Mach number 
approaches zero and usually a separate incompressible code is needed for this special case. There 
are three obvious reasons behind this problem: 

1.  Choice of variables: usually conservative (p, pu, pu, p E )  or primitive (p, u, v, p )  variables are 
used in compressible codes. The density is not a variable in incompressible flows. 

2. Choice of references for non-dimensional variables: for example, in some codes the velocity is 
normalized by the speed of sound at free stream conditions, which is unbounded for 
incompressible flows. 

3. The limit behauiour of the perfect gas law: The pressure is not proportional to the temper- 
ature for constant density flows. On the contrary, the pressure is independent of temperature 
for this case. 

In References 30 and 31 we proposed to use p ,  u, v, and T as variables. This choice is reasonable 
for the representation of both compressible and incompressible flows. The non-dimensional 
pressure and temperature become unbounded as the free stream Mach number vanishes, hence 
new bounded variables are introduced: 

and 

With this choice, an expression for, the non-dimensional density can be easily obtained, since 

- Y F  
y - l T  

p = -- 

Y -- - 
Y - 1  

1 

T+-- 

yM’,P* + 1 - - 
(7 - I )M’ ,T* + 1 

It is clear that p approaches 1 as the M ,  approaches zero. Hence, the continuity, momentum and 
energy equations are solved for q, p *  and T* and the density is replaced by its expression in terms 
of p* and T*.  Notice, the same procedure is applicable for unsteady flows with uniform upstream 
conditions. The momentum and energy equations do not change if p and Fare replaced by p* and 
T* since the differences are pure constants and only the derivatives of these variables with respect 
to space or time appear in the equations. Other formulations are studied for nonisothermal flows 
with a general gas law in Reference 31. 

To demonstrate the validity of the new formulation, a general code was developed and tested 
for finite and zero Mach numbers. A simple test case of an incompressible viscous flow over a flat 
plate at high Reynolds number was calculated and the results were comparated with Blasius’ 
boundary layer solution. The same code with supersonic free stream Mach number produced 
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a shock wave at the leading edge of the plate (due to the displacement thickness effect). In these 
calculations, the governing equations are augmented with extra terms, for example a Laplacian of 
p* and the corresponding balancing terms are added to the continuity equation. 

5. A ZONAL APPROACH FOR SIMULATION OF HIGH 
REYNOLDS NUMBER FLOWS 

Recently, many attempts have been made to develop efficient strategies for simulation of high 
Reynolds number flows. Viscous/inviscid interaction procedures and zonal approaches are 
among the most promising methods. In viscous/inviscid interaction procedures, coupling the 
boundary layer and potential or Euler calculations provides a practical approximation for the 
solution of Navier-Stokes equations. The efficiency of the simulation depends, however, on the 
coupling strategy. Convergence difficulties are encountered for problems with large or massive 
separation. In the standard zonal approach, the viscous terms in Navier-Stokes equations are 
switched off outside a thin layer around the body and its wake. Hence, Euler equations are solved 
in most of the domain. The switching strategy must be chosen so it does not upset the 
convergence of the iterative solution process. Also, such an approach does not result in significant 
savings over a standard Navier-Stokes simulation. 

In the present zonal approach, following the work of Tang and HafezZ6 (see also Reference 27), 
a simple coupling strategy between the inner (viscous) and outer (inviscid) zones is implored. The 
viscous effects are transferred to the inviscid calculations through a forcing function. More 
precisely, a thin layer is identified around the body and its wake where the viscous forces are 
important. The Navier-Stokes equations are solved only in these layers where the edge condi- 
tions are evaluated from a separate ‘modified’ inviscid calculation. The latter extends from the 
body surface to the far field covering the entire computational domain. The inviscid equation is 
augmented with a forcing function which is active only in the viscous layers. This forcing function 
is simply the vorticity evaluated from the Navier-Stokes solution at  the previous iteration. The 
density is also modified in the viscous layers using the entropy distribution from Navier-Stokes 
calculations. The augmented inviscid calculations is based on modified Cauchy/Riemann equa- 
tions, hence Euler equations are avoided. The inviscid solution supplies new boundary conditions 
for the next Navier-Stokes calculation. This iterative process of viscous/inviscid interaction is 
repeated until convergence. 

The present method has the following advantages. Navier-Stokes equations are not solved 
everywhere, they are limited only to the thin viscous layers. No displacement thickness is 
evaluated and no boundary layer assumptions nor solutions are employed. The viscous effects are 
transferred through the vorticity and entropy distributions in the viscous layers. Obviously, finite 
element/finite volume simulations on unstructured grids can be used for both the Navier-Stokes 
and the augmented inviscid calculations. In general, two completely different oversetting grids 
can be used for the viscous and inviscid calculations. The numerical methods can be tailored to 
each region to maximize the overall simulation efficiency. 

The disadvantage of the present method lies in the calculation of the augmented inviscid 
equations over the entire domain. (The overlap between the inviscid and viscous regions is the 
whole viscous region.) The situation can be be improved if nested grids are used and the forcing 
function is averaged over a rarefied grid, where the inviscid solution is obtained. It can be argued 
that this inviscid solution still provides a reasonably accurate boundary conditions for 
Navier-Stokes calculations. 
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Numerical methods and results 

For two-dimensional flows, the following equations are solved in the entire domain of 
computation: 

where 

and 

Both w and s vanish outside the viscous layers. Their distributions inside these layers are obtained 
from the Navier-Stokes solution. 

While this formulation works well for subsonic and slightly transonic flows, convergence 
difficulties are encountered for supersonic flow simulations. To overcome this problem, the 
governing equations are casted into a hyperbolic system in an artificial time. The Cauchy/ 
Riemann equations are solved for the velocity magnitude (q)  and direction (0) (see Reference 1 1  
for a similar pseudo-unsteady approach). The system of equations 

4, - ( p q  cos 8) - ( p q  sin 0), = 0 

8, - (qcos0), + (qsinO), = -w 

(26) 

(27) 

can be symmetrized. The inviscid equations are now appropriate for supersonic calculations. 
A special treatment at  the stagnation point (4 = 0) is necessary. Although multiplies of 2a can be 
added or subtracted to the angle without affecting the sine and cosine functions, the angles should 
be defined consistently while evaluating the derivatives of 8. 

The above equations are augmented with artificial dissipation. Gauss and Stokes theorem are 
used to integrate the augmented equations over the control volumes. Special control volumes are 
encountered near solid surfaces. As before, discrete equations for each node can be readily 
obtained. These equations are linearzied using Newton's method and at each iteration, a linear 
system is solved either explicitly or implicitly. 

To test this approach a transonic flow at M ,  = 0 8  and Re = 500 over NACA 0012 aerofoil at 
10" angle of attack is calculated on a (199 x 35) grid using the above viscous/inviscid iteration 
procedure. The contours of the pressure after 5 cycles using the forcing function approach are 
plotted in Figure 5(a) and in the same figure, the viscous region is identified. The comparison of 
the surface pressure distribution with Navier-Stokes solution is shown in Figure 5(b). Finally, 
a viscous supersonic case is calculated for, M ,  = 2.0 and Re = 106. The corresponding surface 
pressure distribution is shown in Figure 5(c). 

In the prlsent study, in both Navier-Stokes and zonal calculations, uniform flows (except in the 
wake) are assumed for outer boundary conditions. Substantial improvements can be obtained 
using asymptotic far-field solutions. In fact, one can identify three layers, viscous, non-linear 
inviscid and linear inviscid layers. The use of asymptotic solutions can reduce the domain of 
integration to only two layers. 



736 M. HAFEZ 

Other benefits of the zonal approach can be exploited. For example, the division of the 
computational domain provides a natural way to use parallel computers for a large problem. By 
solving the viscous and inviscid equations on different processors, the zonal approach can reduce 
storage and computer time requirements. 
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Figure 5. (a) Pressure contours for NACA 0012 aerofoil, Mach 0.8, lo", Re = 500, (b) surface pressure distributions for 
NACA 0012 aerofoil, Mach 0.8, lo", Re = 500, and (c) surface pressure distributions for NACA 0012 aerofoil, Mach 2.0, 

lo", Re = 106 

6. CONCLUDING REMARKS 

In this paper some issues of the solutions of potential, Euler Navier-Stokes and Maxwell's 
equations are examined. For example, the non-uniqueness of the solutions of potential and Euler 
equations are discussed.(Although, up to the the author's knowledge, multiple solutions of 
Navier-Stokes equations, in the transonic regime, have not been demonstrated, non-unique 
solutions have been calculated by Bailey and Beam37 for low subsonic-high Reynolds number 

Numerical results of a finite volume scheme based on a local finite element approximation are 
presented. (All calculations, in this work, are based on linear elements.) Higher-order artificial 
dissipation are produced upon the discretization of augmented higher-order terms consistent 
with the original equations. This development leads to compact schemes with natural boundary 
conditions hence only the physical constraints are imposed. The present scheme is simpler than 
those of least squares or Taylor/Galerkin methods, particularly in the case of viscous flow 
simulations. For the latter, preliminary results of a new zonal approach are promising. The 
incompressible limit of the compressible flow equations are studied and a unified formulation, 
valid for the zero Mach number case, is proposed. 

More work is needed for the simulation of discontinuous solutions specially for the case of 
supersonic-supersonic shocks. Because of the artificial dissipation, the signature is lost few chords 
from the body. One remedy to this problem is grid adaptation, another possibility is shock-fitting. 

Only calculations of steady-state solutions (except for Maxwell's equations) are considered. 
Extensions to time-dependent (transient) problems are not straightforward and are reported 
elsewhere. 

flows). 
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APPENDIX 

Solutions of Maxwell’s equations 

Recently, there has been an increasing interest in the numerical simulation of eletromagnetic 
wave propagation and scattering via time domain methods. Explicit time integration of Maxwell’s 
equations has been successfully demonstrated by Taflove and Umshankar3’ using Yee’s leapfrog 
method33 and also by S h a ~ ~ k a r ~ ~  using a Lax-Wendroff method. A staggered grid (in space and 
time) is employed with the leapfrog method, while there is, in general, a dissipation error with 
Lax-Wendroff method. 

Since then, applications of CFD techniques to electromagnetic calculations has become 
popular. In this regard, one has to emphasize the differences between the two fields and promote 
this technology transfer only when it is relevant and promising. For example, in computational 
fluid dynamics, artificial viscosity methods, or upwind schemes, are commonly used to capture 
shock waves and contact discontinuities in the solution of the non-linear inviscid conservation 
laws (Euler equations). In contrast, Maxwell’s equations are linear and amplitude and phase 
errors are of primary concern in wave propagation. 

In the present study, a method is considered to overcome the decoupling of adjacent nodes on 
unstaggered grids without the deleterious effects of artificial viscosity. It is well known that 
Maxwell’s first-order equations can be rewritten in the form of second-order wave equations for 
the electric and magnetic fields (assuming zero electrical conductivity and magnetic resistivity). 
The second-order form, however, requires more boundary (and initial) conditions. To supply 
these extra conditions, the first-order equations can be imposed on the boundary (provided that 
the boundary data is differentiable). For a smooth data and with proper treatments of the far field 
(radiation conditions) the two linear systems are equivalent and possess unique solutions which 
are identical (i.e. the solution of the first-order equations satisfy the second-order wave equations 
and vice versa). On the discrete level, using a staggered grid, it can be shown that the leapfrog 
method, applied to the first-order equations, is equivalent to the central difference scheme of the 
second-order wave equations, by taking the discrete curl of the first-order difference equations 
assuming the discrete electric and magnetic fields are divergence free. This argument is valid 
because the discrete version of a necessary vector identity holds on the staggered grid. Hence, for 
smooth data and smooth boundaries, one may replace the first-order Maxwell’s equations by 
second-order wave equations and use the simple central difference scheme on unstaggered grids. 

In general, it is still desirable to solve the original first-order equations. Applying central 
differences in space and time to the first-order equations leads to an explicit non-dissipative 
second-order accurate scheme. The solution, however, decouples over two sets of grid points and 
in Yee’s method only one set of the grid points is considered and the other set is discarded. 

In the present method, all the grid points are considered and to avoid the decoupling problems, 
the first-order equations are augmented with second-order derivatives, multiplied by a small 
parameter. Unlike the artificial viscosity methods, these augmented terms are not dissipative, and 
they vanish identically, on the differential level, for a smooth solution. The extra terms are simply 
the second-order wave equations. In short, a weighted combination of the first and second-order 
equations are solved on an unstaggered grid. Symbolically, the scheme can be written for the 
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vector unknown W in the form 

L , ( W )  + ELZ(W) = 0 (28) 
where L1 and L2 are discrete approximations of the first- and second-order equations, respect- 
ively. Consider, for example, the simple wave equation 

(29) w, + cw, = 0 

w, + cw, + E(W,, - c2w,,) = 0 

the corresponding augmented system is 

The small parameter E controls the properties of the discrete sc.eme. The scheme can be 
implemented on unstructured grids using finite elements or finite volumes in space and finite 
differences in time. Higher-order integration procedures in time for example Runge-Kutta 
method can be also used. Since Maxwell’s equations can be written as a symmetric system of 
first-order hyperbolic equations, the present method can be related to either the least- 
squares/Galerkin or Taylor/Galerkin methods. 

The two-dimensional transverse magnetic mode (TM) equations are solved for wave scattering 
off a cylinder and a NACA 0012 aerofoil following English and H a f e ~ . ~ ~  Equal order interpola- 
tion of the electric and magnetic fields are used. Applying Gauss and Stokes theorem reduces the 
integration of the augmented equations on a control volume to line integrals of the fluxes and 
their derivatives. At the bounded by nodes, the extra second-order terms are ignored and only the 
original equations are integrated over the special control volumes bounded by the object. For the 
TM mode, the electric field at the boundary of a perfectly conducting material and the normal 
component of the magnetic field vanish. The first condition is imposed explicitly while the second 
condition follows from the governing equations. The second boundary condition can be imposed 
implicitly as follows. As each boundary node, the normal and tangent to the body is calculated. 
The normal derivative of the electric field is calculated as a weighted combination of the 
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Figure 7. Bisatic RCS for NACA 0012 aerofoil 

corresponding x and y derivatives in each element hence the tangential component of the 
magnetic field is updated and its x and y components are readily calculated. In the far field, 
a non-reflecting boundary condition is used. In the present calculations, both the first- and 
second-order time derivatives are discretized via central differences for all interior nodes. For the 
boundary and far field nodes, one sided differences are used. The scheme is explicit with a stability 
restriction on time step. For the cylinder a grid of 80 nodes on the body and 50 rings was used for 
an electrical size ka = 5. RCS were generated after 7.96 cycles (At  = 0.01). For the aerofoil, a grid 
of 116 nodes on the body and 70 rings was used for a wavelength of 274 where 1 is the chord. The 
results were.generated after 5.57 cycles (At = 0001). In Figure 6. Bistatic RCS for the circular 
cylinder is plotted and the numerical results are compared to a series solution. The corresponding 
results for the aerofoil is plotted in Figure 7. Higher-order schemes in space and time are 
discussed in Reference 36. 
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